Koszul Duality for Stratified Algebras Ii. Standardly Stratified Algebras

نویسنده

  • VOLODYMYR MAZORCHUK
چکیده

We give a complete picture of the interaction between Koszul and Ringel dualities for graded standardly stratified algebras (in the sense of Cline, Parshall and Scott) admitting linear tilting (co)resolutions of standard and proper costandard modules. We single out a certain class of graded standardly stratified algebras imposing the condition that standard filtrations of projective modules are finite, and develop the tilting theory for such algebras. Under the assumption of existence of linear tilting (co)resolutions we show that algebras from this class are Koszul, that both Ringel and Koszul duals belong to the class, and that these two dualities on this class commute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized Koszul theory and its applications in representation theory A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY

There are many structures (algebras, categories, etc) with natural gradings such that the degree 0 components are not semisimple. Particular examples include tensor algebras with non-semisimple degree 0 parts, extension algebras of standard modules of standardly stratified algebras. In this thesis we develop a generalized Koszul theory for graded algebras (categories) whose degree 0 parts may b...

متن کامل

On the structure of standardly stratified algebras

In the first part of the paper we give a characterization for an associative algebra to be standardly stratified in the sense of Cline, Parshall and Scott, generalizing a theorem of V. Dlab. In the second part of the paper we construct characteristic tilting modules for standardly stratified algebras and use them to estimate the finitistic dimension of such algebras. These tilting modules give ...

متن کامل

Dlab’s theorem and tilting modules for stratified algebras

In the first part of the paper we give a characterization for an associative algebra to be standardly stratified in the sense of Cline, Parshall and Scott, generalizing a theorem of V. Dlab. In the second part of the paper we construct characteristic tilting modules for standardly stratified algebras and use them to estimate the finitistic dimension of such algebras. These tilting modules give ...

متن کامل

Koszul Duality for Stratified Algebras I. Quasi-hereditary Algebras

We give a complete picture of the interaction between Koszul and Ringel dualities for quasi-hereditary algebras admitting linear tilting (co)resolutions of standard and costandard modules. We show that such algebras are Koszul, that the class of these algebras is closed with respect to both dualities and that on this class these two dualities commute. All arguments reduce to short computations ...

متن کامل

On Good Filtration Dimensions for Standardly Stratified Algebras

∇−good filtration dimensions of modules and of algebras are introduced by Parker for quasi-hereditary algebras. These concepts are now generalized to the setting of standardly stratified algebras. Let A be a standardly stratified algebra. The ∇-good filtration dimension of A is proved to be the projective dimension of the characteristic module of A. Several characterizations of ∇good filtration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008